Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Journal of Lipid and Atherosclerosis ; : 223-239, 2021.
Article in English | WPRIM | ID: wpr-892557

ABSTRACT

Objective@#Ischemic cardiomyopathy (ICM) is the leading cause of heart failure. Proteomic and genomic studies have demonstrated ischemic preconditioning (IPC) can assert cardioprotection against ICM through mitochondrial function regulation. Considering IPC is conducted in a relatively brief period, regulation of protein expression also occurs very rapidly, highlighting the importance of protein function modulation by post-translational modifications. This study aimed to identify and analyze novel phosphorylated mitochondrial proteins that can be harnessed for therapeutic strategies for preventing ischemia/reperfusion (I/R) injury. @*Methods@#Sprague-Dawley rat hearts were used in an ex vivo Langendorff system to simulate normal perfusion, I/R, and IPC condition, after which the samples were prepared for phosphoproteomic analysis. Employing human cardiomyocyte AC16 cells, we investigated the cardioprotective role of CKMT2 through overexpression and how site-directed mutagenesis of putative CKMT2 phosphorylation sites (Y159A, Y255A, and Y368A) can affect cardioprotection by measuring CKMT2 protein activity, mitochondrial function and protein expression changes. @*Results@#The phosphoproteomic analysis revealed dephosphorylation of mitochondrial creatine kinase (CKMT2) during ischemia and I/R, while preserving its phosphorylated state during IPC. CKMT2 overexpression conferred cardioprotection against hypoxia/reoxygenation (H/R) by increasing cell viability and mitochondrial adenosine triphosphate level, preserving mitochondrial membrane potential, and reduced reactive oxygen species (ROS) generation, while phosphomutations, especially in Y368, nullified cardioprotection by significantly reducing cell viability and increasing ROS production during H/R. CKMT2 overexpression increased mitochondrial function by mediating the proliferator-activated receptor γ coactivator-1α/ estrogen-related receptor-α pathway, and these effects were mostly inhibited by Y368A mutation. @*Conclusion@#These results suggest that regulation of quantitative expression and phosphorylation site Y368 of CKMT2 offers a unique mechanism in future ICM therapeutics.

2.
Journal of Lipid and Atherosclerosis ; : 223-239, 2021.
Article in English | WPRIM | ID: wpr-900261

ABSTRACT

Objective@#Ischemic cardiomyopathy (ICM) is the leading cause of heart failure. Proteomic and genomic studies have demonstrated ischemic preconditioning (IPC) can assert cardioprotection against ICM through mitochondrial function regulation. Considering IPC is conducted in a relatively brief period, regulation of protein expression also occurs very rapidly, highlighting the importance of protein function modulation by post-translational modifications. This study aimed to identify and analyze novel phosphorylated mitochondrial proteins that can be harnessed for therapeutic strategies for preventing ischemia/reperfusion (I/R) injury. @*Methods@#Sprague-Dawley rat hearts were used in an ex vivo Langendorff system to simulate normal perfusion, I/R, and IPC condition, after which the samples were prepared for phosphoproteomic analysis. Employing human cardiomyocyte AC16 cells, we investigated the cardioprotective role of CKMT2 through overexpression and how site-directed mutagenesis of putative CKMT2 phosphorylation sites (Y159A, Y255A, and Y368A) can affect cardioprotection by measuring CKMT2 protein activity, mitochondrial function and protein expression changes. @*Results@#The phosphoproteomic analysis revealed dephosphorylation of mitochondrial creatine kinase (CKMT2) during ischemia and I/R, while preserving its phosphorylated state during IPC. CKMT2 overexpression conferred cardioprotection against hypoxia/reoxygenation (H/R) by increasing cell viability and mitochondrial adenosine triphosphate level, preserving mitochondrial membrane potential, and reduced reactive oxygen species (ROS) generation, while phosphomutations, especially in Y368, nullified cardioprotection by significantly reducing cell viability and increasing ROS production during H/R. CKMT2 overexpression increased mitochondrial function by mediating the proliferator-activated receptor γ coactivator-1α/ estrogen-related receptor-α pathway, and these effects were mostly inhibited by Y368A mutation. @*Conclusion@#These results suggest that regulation of quantitative expression and phosphorylation site Y368 of CKMT2 offers a unique mechanism in future ICM therapeutics.

3.
The Korean Journal of Physiology and Pharmacology ; : 57-64, 2013.
Article in English | WPRIM | ID: wpr-727488

ABSTRACT

Cells can resist and even recover from stress induced by acute hypoxia, whereas chronic hypoxia often leads to irreversible damage and eventually death. Although little is known about the response(s) to acute hypoxia in neuronal cells, alterations in ion channel activity could be preferential. This study aimed to elucidate which channel type is involved in the response to acute hypoxia in rat pheochromocytomal (PC12) cells as a neuronal cell model. Using perfusing solution saturated with 95% N2 and 5% CO2, induction of cell hypoxia was confirmed based on increased intracellular Ca2+ with diminished oxygen content in the perfusate. During acute hypoxia, one channel type with a conductance of about 30 pS (2.5 pA at -80 mV) was activated within the first 2~3 min following onset of hypoxia and was long-lived for more than 300 ms with high open probability (Po, up to 0.8). This channel was permeable to Na+ ions, but not to K+, Ca+, and Cl- ions, and was sensitively blocked by amiloride (200 nM). These characteristics and behaviors were quite similar to those of epithelial sodium channel (ENaC). RT-PCR and Western blot analyses confirmed that ENaC channel was endogenously expressed in PC12 cells. Taken together, a 30-pS ENaC-like channel was activated in response to acute hypoxia in PC12 cells. This is the first evidence of an acute hypoxia-activated Na+ channel that can contribute to depolarization of the cell.


Subject(s)
Animals , Rats , Amiloride , Hypoxia , Blotting, Western , Cell Hypoxia , Epithelial Sodium Channels , Ion Channels , Ions , Neurons , Oxygen , PC12 Cells , Pheochromocytoma
SELECTION OF CITATIONS
SEARCH DETAIL